
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

236 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Keccak f-[1600]
performance based on storage space requirements

Ananya Chowdhury

Department of Information Technology

Jadavpur University

Kolkata, West Bengal, India

Utpal Kumar Ray

Department of Information Technology

Jadavpur University

Kolkata, West Bengal, India

Abstract—Keccak is the latest Hash Function selected as the

winner of NIST Hash Function Competition. SHA-3 is not meant

to replace SHA-2 as no significant attacks on SHA-2 have been

demonstrated. But it is designed in response to the need to find

an alternative and dissimilar construct for Cryptographic Hash

that is more fortified to attacks. In this paper we have tried to

depict an analysis of the software implementation of Keccak-

f[1600] based on the disk space utilization and time required to

compute digest of desired sizes.

Keywords—Sponge Construction; State; Rounds; Bitrate(r);

Capacity(c); Diversifier(d); Plane; Slice; Sheet; Row; Column;

Lane; Bit

I. BACKGROUND

Distributed Computing and Network Communication has
revolutionized the face of modern computing. But it brings
with it serious security concerns like verifying the integrity and
authenticity of the transmitted data. The sender and the receiver
communicating over an insecure channel essentially require a
method by which the information transmitted by the sender can
be easily authenticated by the receiver as “unmodified” or
authentic. To achieve this, technique called “Hashing” is
employed which relies on a family of Hash Functions. Keccak
is one such Hash Function which is selected as the winner of
NIST Hash Function Competition.

II. INTRODUCTION

The state of Keccak- f [1600] is organized as a three-
dimensional array [2], which suggests several ways to partition
the bits. The naming conventions as suggested by the authors
are described in detail in the subsequent sections. While this is
an optimal choice on software platforms actually offering 64-
bit operations, the bit interleaving technique allows efficient
implementations on systems with smaller word sizes and can
also be used to target compact hardware circuits. In its simplest
form, namely factor-2 interleaving, it splits the odd and even
bits of each lane. The state of Keccak- f [1600] is then
represented as 50 words of 32 bits.

III. SPONGE FUNCTION

A. What is a Sponge Function ?

In the context of cryptography, the Sponge Construction[2]
is a mode of operation, based on a fixed-length permutation (or
transformation) and on a padding rule, which builds a function
mapping variable-length input to variable-length output. It
takes as input an element of (Z2)*, i.e., a binary string of any
length, and returns a binary string with any requested length,

i.e., an element of (Z2)
n
 with n a user-supplied value. It

operates on a finite state by iteratively applying the inner
permutation to it, interleaved with the entry of input or the
retrieval of output.

B. Working Principle of Sponge Construction

The sponge construction[2] is a simple iterated construction
for building a function F, with variable-length input and
arbitrary length output based on a fixed-length permutation (or
transformation) f, operating on a fixed number, b of bits.
Here b is called the width. The sponge construction operates on
a state of b =(r + c) bits. The value r is called bit-rate and c is
called capacity.

Fig. 1. Sponge Construction

First, the input string is padded with a reversible padding
rule and cut into blocks of r bits. Then the b bits of the state are
initialized to zero and the sponge construction proceeds in two
phases:

 In the absorbing phase, the r-bit input blocks are XOR
ed into the first r bits of the state, interleaved with
applications of the function f. When all input blocks
are processed, the sponge construction switches to the
squeezing phase.

 In the squeezing phase, the first r bits of the state are
returned as output blocks, interleaved with applications
of the function f. The number of output blocks is
chosen at will by the user.

The sponge construction uses r +c bits of state, of which r
are updated with message bits between each application of
Keccak- f during the absorbing phase and output during the
squeezing phase. The remaining c bits are not directly affected
by message bits, nor are they taken as output.

IV. NAMING CONVENTIONS

The Keccak naming conventions are as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

237 | P a g e

www.ijacsa.thesai.org

 State and Rounds [3]: Keccak consists of a set of 7
permutations and is denoted as Keccak - f [b], where b
{25, 50, 100, 200, 400, 800, 1600} is the width of the
permutation. The state of Keccak- f [1600] is organized
as a three-dimensional array, which suggests several
ways to partition the bits. The state of Keccak- f [1600]
can be expressed as 25 lanes of 64 bits each. These
Keccak-f permutations are iterated constructions
consisting of a sequence of almost identical rounds.
The number of rounds nr depends on the permutation
width, and is given by

 nr = 12 + 2ℓ, where 2
ℓ
= b/25 .

Fig. 2. State

 Bit-rate(r), Capacity(c) and Diversifier(d) [3]:

The sum b = r + c determines the width of the Keccak-f
permutation used in the Sponge Construction where b {25,
50, 100, 200, 400, 800, 1600}. The diversifier value satisfies
0<=d< 256.

The default bitrate r = 1024 is a power 10 of 2 to ease data
alignment and the resulting capacity is c = 1600−1024 = 576.
The default value for the diversifier d is 0.

The purpose of the diversifier is to provide diversification,
i.e., two instances of Keccak with two different values of d
behave as two independent hash functions (even with same
values of r and c).

 Plane [3]: A plane is a set of 5w bits with constant y
coordinate.

Fig. 3. Plane

 Slice [3]: A slice is a set of 25 bits with constant z
coordinate.

Fig. 4. Slice

 Sheet [3]: A sheet is a set of 5w bits with constant x
coordinate.

Fig. 5. Sheet

 Row [3]: A row [15] is a set of 5 bits with constant y
and z coordinates.

Fig. 6. Row

 Column [3]: A column [15] is a set of 5 bits with
constant x and z coordinates.

Fig. 7. Column

 Lane [3]: A lane [15] is a set of w bits with constant x
and y coordinates.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

238 | P a g e

www.ijacsa.thesai.org

Fig. 8. Lane

 Bit [3]: A particular w bit [15] is referred to as bit.

Fig. 9. Bit

V. SPECIFICATION SUMMARY OF KECCAK

The specification of Keccak-f [1600] is as follows.

Keccak-f[b] (A) {

 forall i in 0…nr-1

A = Round[b] (A, RC[i])

return A

}

Round[b] (A, RC) {

 θ step

C[x] = A[x, 0] xor A[x, 1] xor A[x, 2] xor A[x, 3] xor A[x, 4],

forall x in 0…4

D[x] = C[x-1] xor rot(C[x+1], 1),

forall x in 0…4

A[x, y] = A[x, y] xor D[x],

forall (x, y) in (0…4, 0…4)

ρ and π steps

B[y, 2*x+3*y] = rot (A[x, y], r[x, y]),

forall (x, y) in (0…4, 0…4)

χ step

A[x, y] = B[x, y] xor ((not B[x+1, y]) and B[x+2, y]),

forall (x, y) in (0…4, 0…4)

ι step

A [0, 0] = A [0, 0] xor RC

return A

}
All the operations on the indices are done modulo 5.

A denotes the complete permutation state array, and A[x,
y] denotes a particular lane in that state. B[x, y], C[x], D[x] are
intermediate variables.

The constants r[x, y] are the rotation offsets,
while RC[i] are the round constants. rot (W, r) is the usual
bitwise cyclic shift operation, moving bit at position i into
position i+r (modulo the lane size).

A Keccak- f round consists of a sequence of invertible steps
each operating on the state, organized as an array of 5 X 5

lanes, each of length w {1,2 4, 8, 16, 32, 64} (b = 25w).
Therefore b {25, 50, 100, 200, 400, 800, 1600}. When
implemented on a 64-bit processor, a lane of Keccak- f [1600]
can be represented as a 64-bitCPU word. Here not denotes the
bitwise exclusive OR, NOT the bitwise complement and AND
the bitwise AND operation.

We obtain the Keccak[r, c] sponge function, with
parameters capacity, c and bit-rate, r if we apply the sponge
construction to Keccak - f [r + c] and perform specific padding
on the message input.

In the pseudo-code below, S denotes the state as an array of
lanes. The padded message P is organised as an array of
blocks Pi, themselves organized as arrays of lanes.
The || operator denotes the usual byte string concatenation.

Keccak[r,c](M) {

 Initialization and Padding

 S[x, y] =0,

forall (x, y) in (0…4, 0…4)

 P = M || 0x01 || 0x00 || … || 0x00

 P = P xor (0x00 || … || 0x00 || 0x80)

Absorbing Phase

 forall block Pi in P

 S[x, y] = S[x, y] xor Pi[x+5*y],

forall (x, y) such that x+5*y < r/w

 S = Keccak-f[r+c](S)

 Squeezing Phase

 Z = empty string

 while output is requested

 Z = Z || S[x, y],

forall (x, y) such that x+5*y < r/w

 S = Keccak-f[r+c](S)

Return Z

}

VI. EXPERIMENTAL SETUP

This section describes the inputs, outputs, experimental
results and graphical analysis after implementation of Keccak-f
[1600] under the laboratory experimental setup of University.
All the experiments are performed on the following hardware
and software platform and the experimental results are
recorded with the best possible precision and accuracy under
the laboratory experimental setup.

1) Hardware Configuration:

 Intel® Core(TM)2 Quad CPU

Q8400 @2.66GHz, 2.65GHz

3.25GB RAM

Physical Address Extension

2) Operating System:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

239 | P a g e

www.ijacsa.thesai.org

 Fedora release 11(Leonidas)

3) Software Configuration:

 Language used is C

 Compiler: gcc (GCC) 4.4.0 20090506(Red Hat 4.4.0-4)

Our chief objective is to analyze the performance of
Keccak-f [1600] with respect to the time required to compute
digests of various sizes and the disk space required by the
output files of different.

Fig. 10. Time Taken to Compute Digest Vs. Size of Output File Plot for

Digest of Size = 224bits

Fig. 11. Time Taken to Compute Digest Vs. Size of Output File Plot for

Digest of Size = 256bits

Fig. 12. Time Taken to Compute Digest Vs. Size of Output File Plot for

Digest of Size = 512 bits

Fig. 13. Time Taken to Compute Digest Vs. Size of Output File Plot for

Digest of Size = 384bits

TABLE I. TIME AND SIZE OF OUTPUT

Fig. 14. Size of Output File Vs. Input Message Length Plot for Digest of

Size = 224bits

0

0.005

0.01

0.015

0.02

0.025

246 270 320 420 621

Time Plot Vs. Size of Output

Digest
Length
= 224
bits

0

0.005

0.01

0.015

0.02

0.025

254 278 328 428 629

Time Plot Vs. Size of Output

Digest
Length
= 256
bits

0

0.005

0.01

0.015

0.02

0.025

318 342 392 492 693

Time Plot Vs. Size of Output

Digest
Length
= 512
bits

0

0.005

0.01

0.015

0.02

0.025

286 310 360 460 661

Time Plot Vs. Size of Output

Digest
Length
= 384
bits

0

100

200

300

400

500

600

700

100 200 400 800 1600

Size of Output File Vs. Input Message Length

Message Length (in bits)

Digest
Length
= 224
bits

Time to

compute

Digest(in

seconds)

Size of Output File for different Digest Lengths(in

bytes)

Digest

Length =

224 bits

Digest

Length =

256 bits

Digest

Length =

384 bits

Digest

Length

= 512

bits

0.009 246 254 286 318

0.011 270 278 310 342

0.013 320 328 360 392

0.023 420 428 460 492

0.023 621 629 661 693

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

240 | P a g e

www.ijacsa.thesai.org

Fig. 15. Size of Output File Vs. Input Message Length Plot for Digest of

Size = 256bits

Fig. 16. Size of Output File Vs. Input Message Length Plot for Digest of

Size = 384bits

Fig. 17. Size of Output File Vs. Input Message Length Plot for Digest of

Size = 512bits

TABLE II. INPUT MESSAGE LENGTH AND SIZE OF OUTPUT

Fig. 18. Time Taken to Compute Digest Vs. Input Message Length Plot for

Digest of Size = 512bits

TABLE III. TIME AND MESSAGE LENGTH

Sr.

No.

Length of Input

Message(in bits)
Time to Compute Digest(in s)

1 100 0.009

2 200 0.011

3 400 0.013

4 800 0.023

5 1600 0.023

VII. CONCLUSION AND DISCUSSION

It is evident from Fig.10 to Fig. 13, time taken to compute
digests of 4 different sizes i.e. 224bits, 256bits, 384bits and
512bits are approximately constant. Initially it rises almost
linearly and after a certain point of time it remains constant.
This points out a stable behavior of Keccak-f[1600] that almost
same time needed to compute digests of different sizes and for
large file sizes it is constant.

Thus it will show satisfactory performance for applications
that need to compute digests for input of large sizes.

0

100

200

300

400

500

600

700

100 200 400 800 1600

Message Length (in bits)

Digest
Length
= 256
bits

Size of Output File Vs. Input Message Length

0

100

200

300

400

500

600

700

100 200 400 800 1600

Size of Output File Vs. Input Message
Length

Message Length (in bits)

Digest
Length
= 384
bits

0

100

200

300

400

500

600

700

800

100 200 400 800 1600

Size of Output File Vs. Input Message
Length

Message Length (in bits)

Digest
Length
= 512
bits

Length of

Input

Message(in

bits)

Size of Output File for different Digest

Lengths(in bytes)

Digest

Length =

224 bits

Digest

Length =

256 bits

Digest

Length

= 384

bits

Digest

Length =

512 bits

100 246 254 286 318

200 270 278 310 342

400 320 328 360 392

800 420 428 460 492

1600 621 629 661 693

0

0.005

0.01

0.015

0.02

0.025

0 200 400 600 800 1000 1200 1400 1600 1800

Time Vs. Message Length Plot

Length of Input Message (in bits)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

241 | P a g e

www.ijacsa.thesai.org

Fig.14 to Fig. 17 depicts how the size of output file grows
with an increase in the length of the input message. This
observation focuses on the secondary storage requirement of
Keccak-f[1600]. Keccak-f[1600] shows similar graphs for
digests of 4 different lengths i.e. 224bits, 256bits, 384bits and
512bits. This shows that Keccak-f[1600] can be conveniently
used in devices with limited memory capability like mobile
devices.

Fig. 18 shows the time Keccak-f[1600] takes to compute
digest of all 4 sizes for different input message lengths.
Interestingly for larger input sizes 800 bits and above, the time
taken is constant 0.023 s. Thus unlike most other hash
functions, the behavior of Keccak-f[1600] is extremely stable
and constant for larger input sizes.

As a Sponge Function, Keccak has an arbitrary output
length which makes it strikingly different from other well-
known Hash Functions which has fixed output length. Keccak
does not follow iterated hash function structures like its
contemporaries MD5, MD6 etc. The instance of Keccak
proposed for SHA-3, Keccak-f[1600] make use of a single
permutation for all security strengths and this cuts down the
implementation cost. Hence Keccak is a robust, flexible,
efficient hash algorithm which has a promising future ahead.

VIII. FUTURE WORK

Keccak-f[1600] can be natively used for hashing, MAC
Computation etc. catering to both the needs of fixed-length
output and variable length output. In addition it can also be
used for symmetric key encryption and random number
generation. The arbitrary output length of Keccak makes it
suitable for tree hashing. Tree hashing has the power to exploit
the advantages of parallel processing for substantially large
inputs. This makes Keccak one of most suitable candidate for
multi-core processor architecture.

ACKNOWLEDGMENT

With great pleasure we would like to express our heartfelt
gratitude to all the staff-members of Department of
Information Technology, Jadavpur University, for the help and
cooperation.

REFERENCES

[1] Cryptography and Network Security (Principles and Practices) Fourth
Edition by William Stallings.

[2] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche
“Keccak Implementation Overview”: keccak.noekeon.org_Keccak-
implementation-3.2.

[3] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche “The
Keccak Reference”: keccak.noekeon.org_Keccak-reference-3.0.

